Publication:
Tracking the early depleting transmission dynamics of COVID-19 with a time-varying SIR model

Research Projects
Organizational Units
Journal Issue
Abstract
The susceptible-infectious-removed (SIR) model ofers the simplest framework to study transmission dynamics of COVID-19, however, it does not factor in its early depleting trend observed during a lockdown. We modifed the SIR model to specifcally simulate the early depleting transmission dynamics of COVID-19 to better predict its temporal trend in Malaysia. The classical SIR model was ftted to observed total (I total), active (I) and removed (R) cases of COVID-19 before lockdown to estimate the basic reproduction number. Next, the model was modifed with a partial time-varying force of infection, given by a proportionally depleting transmission coefcient, βt and a fractional term, z. The modifed SIR model was then ftted to observed data over 6 weeks during the lockdown. Model ftting and projection were validated using the mean absolute percent error (MAPE). The transmission dynamics of COVID-19 was interrupted immediately by the lockdown. The modifed SIR model projected the depleting temporal trends with lowest MAPE for I total, followed by I, I daily and R. During lockdown, the dynamics of COVID-19 depleted at a rate of 4.7% each day with a decreased capacity of 40%. For 7-day and 14-day projections, the modifed SIR model accurately predicted I total, I and R. The depleting transmission dynamics for COVID-19 during lockdown can be accurately captured by time-varying SIR model. Projection generated based on observed data is useful for future planning and control of COVID-19.
Description
Keywords
Covid-19, Transmission, SIR, Depleting
Citation